
Srinivas University V Semester BCA

Advanced Java Programming 7 | P a g e

1.1 Applet Basics

UNIT-1

Chapter-1

Introducing Applet

Applets are small programs that are designed for transmission over the Internet and run

within a browser. Because Java‘s virtual machine is in charge of executing all Java

programs, including applets, applets offer a secure way to dynamically download and execute

programs over the Web.

There are two general varieties of applets: those based on the Abstract Window Toolkit (AWT)

and those based on Swing. Both the AWT and Swing support the creation of a graphical user

interface (GUI). The AWT is the original GUI toolkit and Swing is Java‘s lightweight

alternative. It is important to understand, however, that Swing-based applets are built upon

the same basic architecture as AWT-based applets. Furthermore, Swing is built on top of the

AWT. Therefore, the information and techniques presented here describe the foundation of

applet programming and most of it applies to both types of applets.

/ / A Minimal AWT-based applet.

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint (Graphics g) {
g.drawString (―Java makes applets easy. ―, 20, 20);

}

}

This applet begins with two import statements. The first imports the Abstract Window Toolkit

classes. Applets interact with the user (either directly or indirectly) through the AWT, not

through the console-based I/O classes. The AWT contains support for a window- based,

graphical user interface. The next import statement imports the applet package. This package

contains the class Applet. Every applet that you create must be a subclass (either directly

or indirectly) of Applet. The next line in the program declares the class SimpleApplet.

This class must be declared as public because it will be accessed by outside code. Inside

SimpleApplet, paint() is declared. This method is defined by the AWT Component class

(which is a superclass of Applet) and is overridden by the applet. paint() is called each

time the applet must redisplay its output. This can occur for several reasons. For example, the

window in which the applet is running can be overwritten by another window and then

uncovered. Or the applet window can be minimized and then restored. paint() is also called

when the applet begins execution. Whatever the cause, whenever the applet must redraw its

output, paint() is called. The paint() method has one parameter of type Graphics. This

parameter will contain the graphics context, which describes the graphics environment in

which the applet is running. This context is used whenever output to the applet is required.

Inside paint(), there is a call to drawString(), which is a member of the Graphics class.

This

method outputs a string beginning at the specified X, Y location. It has the following general

form:

Srinivas University V Semester BCA

Advanced Java Programming 8 | P a g e

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x, y. In a Java window, the upper-left

corner is location 0,0. The call to drawString() in the applet causes the message to be displayed

beginning at location 20,20.

The applet does not have a main() method. Unlike the standalone application program, applets

do not begin execution at main(). In fact, most applets don‘t even have a main() method.

Instead, an applet begins execution when the name of its class is passed to a browser or other

applet-enabled program.

Compiling applet program is similar to stand alone application program. However, running

SimpleApplet involves a different process. There are two ways in which you can run an applet:

inside a browser or with a special development tool that displays applets. The tool provided

with the standard Java JDK is called appletviewer use it to run the applets. We can also run

them in your browser, but the appletviewer is much easier to use during development.

One way to execute an applet (in either a Web browser or the appletviewer) is to write a

short HTML text file that contains a tag that loads the applet. Currently, Oracle recommends

using the APPLET tag for this purpose.
<applet code = ―simple applet ― width=200 height=60>

</applet>

The width and height statements specify the dimensions of the display area used by the applet.

To execute SimpleApplet with an applet viewer, you will execute this HTML file. For example,

if the preceding HTML file is called StartApp.html, then the following command line will

run SimpleApplet:

C:\> appletviewer StartApp.html

1.1.2 Preparing to Write Applets

Before we try to write applets, we must make sure that Java is installed properly and also ensure

that either the Java appletviewer or a Java-enabled browser is available. The steps involved in

developing and testing in applet are:

1. Building an applet code(.java file)

2. Creating an executable applet(.class file)

3. Designing a Web page using HTML tags

4. Preparing <APPLET> tag

5. Incorporating <APPLET> tag into the Web page

6. Creating HTML file

7. Testing the applet code

1.2 Building Applet Code
Applet code uses the services of two classes, namely, Applet and Graphics from the Java class

library. The Applet class which is contained in the java.applet package provides life and

behaviour to the applet through its methods such as init(), start() and point(). Java calls the

main() method directly to initiate the execution of the program . When an applet is loaded, Java

automatically calls a series of Applet class methods for starting , running, and stopping the

applet code.

Srinivas University V Semester BCA

Advanced Java Programming 9 | P a g e

The paint() method of the Applet class, when it is called, actually displays the result of the

applet code on the screen. The output may be text, graphics, or sound. The paint() method,

which requires a Graphics object as an arquement, is defined as follows.
public void paint(Graphics g)

This requires that the applet code imports the java.awt package that contains the Graphics class.

All output operations of an applet are performed using the methods defined in the Graphics

class.

Syntax:

Import java.awt.*;

Import java.applet.*;

…………..

…………..

Public class appletclassname extends Applet

{

………

Public void paint(Graphics g)

{

…………..

…………..

}

………….

………….

}

The appletclassname is the main class for the applet. When the applet is loaded, Java creates

an instance of this class, and then a series of Applet class methods are called on that instance

to execute the code.

Example:

Import java.awt.*;

Import java.applet.*;
Public class HelloJava extends Applet

{

Public void paint(Graphics g)
{

g.drawString(―Hello Java‖, 10,100);

}

}

1.3 Applet Life Cycle
When an applet is loaded, it undergoes a series of changes in its state as shown in fig.

Srinivas University V Semester BCA

Advanced Java Programming 10 | P a g e

• Born on initialization state

• Running state

• Idle state

• Dead or destroyed state

Initialization State

Applet enters the initialization state when it is first loaded. This is achieved by calling the

init() method of Applet class. The applet is born. At this stage, we may do the following.

• Create objects needed by the applet

• Set up initial values

• Load images or fonts

• Set up colors
public void init()

{
…………

…………

}

Running State

Applet enters the running state when the system calls the start() method of Applet class. This

occurs automatically after the applet is initialized.
public voids start()

{

………

………

}

Idle or stopped state

An applet becomes idle when it is stopped from running. Stopping occurs automatically when

we leave the page containing the currently running applet. We can also do so by calling the

stop() method.
public void stop()

{

Srinivas University V Semester BCA

Advanced Java Programming 11 | P a g e

…………

………..

}

Dead State

An applet is said to be dead when it is removed from memory. This occurs by invoking the

destroy() method when we quit the browser. Destroying stage occurs only once in the applet‘s

life cycle.

public void destroy()

{

…………

…………

…………

}

Display State

Applet moves to the display state whenever it has to perform some output operations on the

screen. This happens immediately after the applet enters into the running state. The paint()

method is called to accomplish this task.
public void paint(Graphics g)

{

………

……..(Display statements)

}

The paint() method is defined in the Applet class.

1.4 Applet Tag
We have included a pair of <APPLET> and </APPLET> tags in the body section. The

<APPLET…> tag supplies the name of the applet to be loaded and tells the browser how much

space the applet requires. The ellipsis in the tag<APPLET..> indicates that it contains certain

attributes that must specified.
<APPLET

CODE=helloJava.class

WIDTH=400

HEIGHT=200>
</APPLET>

This HTML code tells the browser to load the compiled Java applet HelloJava.class, which is

in the same directory as the HTML file. And also specifies the display area for the applet output

as 400 pixels width and 200 pixels height. We can make this display area appear in the centre

of the screen by using the CENTER tags shown as follows.

<CENTER>

<APPLET

………….
……………

</APPLET>

</CENTER>

Note that <APPLET> tag discussed above specifies three things.

1. Name of the applet

2. Width of the applet(in pixels)

Srinivas University V Semester BCA

Advanced Java Programming 12 | P a g e

3. Height

of the applet(in pixels)

1.5 Adding Applet to HTML File
We can put together the various components of the Web page and create a file known as HTML

file. Insert the <APPLET> tag in the page at the place where the output of the applet must

appear. Following is the content of the HTML file that is embedded with the
<APPLET> tag of our HelloJava applet.

<HTML>

<! It specifies the applet to be loaded and executed.

>

<HEAD>

<TITLE>

Welcome to Java

</TITLE>

</HEAD>

<BODY>

<CENTER>

<H1> Welcome to the world of Applet </H1>

</CENTER>

<CENTER>

1.6 Passing parameters to Applet
We can supply user-defined parameters to an applet using <PARAM ... > tags. Each

<PARM… > tag has a name attribute such as color, and a value attribute such as red. Inside

the applet code, the applet can refer to that parameter by name to find its value. For example,

we can change the colour of the text displayed to red by an applet by using a < PARAM... >

tag as follows.

<APPLET >

<PARAM = color VALUE = "red‖ >

</APPLET>

Similarly, we can change the text to be displayed by an applet by supplying new text to the

applet through a <PARAM >tag as shown below:

<PARAM NAME = text VALUE = ‖I love Java ―>

Passing parameters to an applet code using <PARAM>tag is something similar to passing

parameters to the main() method using command line arguments. To set up and handle

parameters, we need to do two things:

1. include appropriate <PARAM > tags in the HTML document.

2. Provide Code in the applet to parse these parameters.

Parameters are passed to an applet when it is loaded. We can define the init() method in the

applet to get hold of the parameters defined in the <PARM> tags. This is done using the

getParameter() method., which takes one string argument representing the name of the

parameter and returns a string containing the value of that parameter.

Srinivas University V Semester BCA

Advanced Java Programming 13 | P a g e

Applet HellojavaParm

import java.awt.*;
import java.applet.*;

public class HelloJavaParam extends Applet

{

String str;

public void init()

{

str = getParameter ("string―); //Receiving parameter value

if (str = = nu1l)
str=‖Java‖;

str= ―Hello‖ + str //Using the value

}

public void paint (Graphics g)

{

g.drawString(str, 10, 100);

}

}

Now we have to create HTML file that contains this applet. below program shows a web

page that passes a parameter whose name is "string" and whose VALUE is "Applet!" to the

applet HelloJavaParam.

The HTML file for HelloJavaParam applet

<HTML>

<! Parameterized HTML file>

<HEAD>
<TITLE> Welcome to Java Applets </TITLE>

<HEAD>

<BODY>

<APPLET CODE = HelloJavaParam.class

WIDTH = 400
HEIGHT = 200>

<PARAM NAME = "string"

VALUE = "Applet! ">

</APPLET>

</BODY>

</HTML>

This will produce output as Hello Applet. if we remove <param> tag from HTML file will

produce output as Hello Java.

Srinivas University V Semester BCA

Advanced Java Programming 14 | P a g e

CHAPTER 2

MANAGING INPUT/OUTPUT FILES IN JAVA

2.1 Introduction
A file is a collection of related records placed in a particular area on the disk. A record is

composed of several fields and a field is a group of characters. Characters in java are Unicode

characters composed of two bytes, each byte containing eight binary digits, 1 or 0.

Storing and managing data using files is known as file processing which includes tasks such

as creating files, updating files and manipulation of data.

2.2 Concept of Streams
In file processing, input refers to the flow of data into a program and output means the flow of

data out of a program. Input to a program may come from the keyboard, the mouse, the

memory, the disk, a network, or another program. Similarly, output from a program may go to

the screen, the printer, the memory, the disk, a network, or another program.

The Stream Classes

Java‘s stream-based I/O is built upon four abstract classes: InputStream, OutputStream,

Reader, and Writer. These classes were briefly discussed in Chapter 13. They are used to

create several concrete stream subclasses. Although your programs perform their I/O

operations through concrete subclasses, the top-level classes define the basic functionality

common to all stream classes.

InputStream and OutputStream are designed for byte streams. Reader and Writer are

designed for character streams. The byte stream classes and the character stream classes form

separate hierarchies. In general, you should use the character stream classes when working

with characters or strings, and use the byte stream classes when working with bytes or other

binary objects.

The Byte Streams

The byte stream classes provide a rich environment for handling byte-oriented I/O. A byte

stream can be used with any type of object, including binary data. This versatility makes byte

streams important to many types of programs. Since the byte stream classes are topped by

InputStream and OutputStream, our discussion will begin with them.

InputStream

InputStream is an abstract class that defines Java‘s model of streaming byte input. It

implements the Closeable interface. Most of the methods in this class will throw an

IOException on error conditions. (The exceptions are mark() and markSupported().) Table

19-1 shows the methods in InputStream.

OutputStream

OutputStream is an abstract class that defines streaming byte output. It implements the

Closeable and Flushable interfaces. Most of the methods in this class return void and throw

an IOException in the case of errors. (The exceptions are mark() and markSupported().)

The below table gives a brief description of all the methods provided by the InputStream

class

Srinivas University V Semester BCA

Advanced Java Programming 15 | P a g e

Method Description

1. Read() Reads a byte from the input stream

2. Read(byte b[]) Reads an array of bytes into b

3. Read(byte b[], int n, int m) Reads m bytes into b starting from nth byte

4. Available() Gives number of bytes availale in the input

5. Skip(n) skips over n bytes from the input stream

6. Reset() Goes back to the beginning of the stream

7. Close closes the input stream

Table gives a brief description of all the methods of outputstream class

Method Description
1. Write() Writes a byte to the output stream

2. write(byte[] b) Writes m bytes in the array b to the output stream

3. write(byte b[], int n, int m) Writes m bytes from array b starting from nth byte

4. close() closes the output stream

5. flush() flushes the output stream

2.3 Character Stream Classes

Character Stream Classes are used to read characters from the source and write characters to

destination.

There are two kinds of Character Stream classes - Reader classes and Writer classes.

• Reader Classes - These classes are subclasses of an abstract class, Reader and they are

used to read characters from a source(file, memory or console).

• Writer Classes - These classes are subclasses of an abstract class, Writer and they used
to write characters to a destination(file, memory or console).

Reader

Reader class and its subclasses are used to read characters from source.
Reader class is a base class of all the classes that are used to read characters from a file,

Srinivas University V Semester BCA

Advanced Java Programming 16 | P a g e

memory or console. Reader is an abstract class and hence we can't instantiate it but we can use

its subclasses for reading characters from the input stream. We will discuss subclasses of

Reader class with their code, in the next few articles.

Hierarchy of reader stream class

Methods of Reader classes

These methods are of Reader class.

Methods Description

Int read() This method reads a character from the input
stream

Int read(char[],

ch)

This method reads a chunk of characters from

the input stream and store them in its char array,

ch.

close() This method closes this output stream and also
frees any system resources connected with it.

Writer

Writer class and its subclasses are used to write characters to a file, memory or console. Writer

is an abstract class and hence we can't create its object but we can use its subclasses for writing

characters to the output stream. We will discuss subclasses of Writer with their code in the next

few articles.

Srinivas University V Semester BCA

Advanced Java Programming 17 | P a g e

Hierarchy of Writer classes

Methods of writer classes

Methods of Writer class provide support for writing characters to the output stream. As this is

an abstract class. Hence, some undefined abstract methods are defined in ths subclasses of

Output Stream.

Methods Description

abstract void
flush()

This method flushes the output steam by forcing out buffered
bytes to be written out.

void write(int c) This method writes a characters(contained in an int) to the
output stream.

void write(char[]

arr)

This method writes a whole char array(arr) to the output

stream.

abstract void

close()

This method closes this output stream and also frees any

resources connected with this output stream.

2.4 Using the File Class

The java.io package in cludes a class known as the File class that provides support for creating

files and directories. The class includes several constructing for instantiating the File objects.

This class also contains several methods for supporting the operations such as

• Creating a file

• Opening a file

• Closing a file

• Deleting a file

• Getting the name of a file

• Getting the size of a file

• Checking the existence of a file

• Renaming a file

• Checking whether the file is writable

• Checking whether the file is readable

Srinivas University V Semester BCA

Advanced Java Programming 18 | P a g e

2.5 Input/output Exceptions
When creating files and performing i/o operations on them, the system may generate i/o

related exception.
The basic i/o related exception classes and their functions are given below.

EOFException Signals that an end of the file or end of stream has been
reached unexpectedly during input.

FileNotFoundException Informs that a file could not be found

InterruptedIOException Warns that an I/O operations has been interrupted

IOException Signals that an I/O exception of some sort has occurred

Each i/o statement or group of i/o statements must have an exception handler around it as

shown below.
try

{

……

……//I/O statements

}

Catch(IOException e)

{

…….

……//message output statement

}

2.6 Creation of Files

If we want to create and use a disk file,we need to decide the following about the file and its

intended purpose.

• Suitable name for the file

• Data type to be stored

• Purpose(reading,writing, or updating)

• Method of creating the file

A filename is a unique string of characters that helps identify a file on the disk.

Example: input.data or input.txt

Data type is to decide the type of file stream classes to be used for handling the data. We should
decide whether the data to be handled is in the form of characters, bytes or primitive type.

The purpose of using a file must also be decided before using it. For example, we should know

whether the file is created for reading only, or writing only, or both the operations.

For using a file, it must be opened first. This is done by creating a file stream and then linking

it to the filename. A file stream can be defined using the classes of Reader/InputStream for

reading data and Writer/OutputStream for writing data.

Srinivas University V Semester BCA

Advanced Java Programming 19 | P a g e

Common Stream Classes used for I/O Operations

Characters

Read Write

CharArrayReader CharArrayWriter

FileReader FileWriter

PipedReader PipedWriter

Bytes

Read Write

ByteArrayInputstream ByteArrayOutputStream

FileInputStream FileOutputStream

PipedInputStream PipedOutputStream

Initializing using a file object

There are two ways of initializing the file stream objects. All of the constructors require that

we provide the name of the file either directly, or indirectly by giving a file object that has

already been assigned a filename.

The following code segment illustrates the use of direct approach.

FileInputStream fis;

try
{

// Assign the filename to the file stream object
fis=new FileInputStream(―test.dat‖);

……

}

Catch(IOException e){}

The indirect approach uses a file object that has been initialized with the desired filename.

This is illustrated by the following code.

File infile; //Declare a file object

Infile=new File(―test.dat‖); //Assign the filename to the file object

FileInputStream fis;
try

{

//Give the value of the file object

//to the file stream object

fis=new FileInputStream(infile);

}
Catch(…..)

{ }

The code above includes five tasks:

• Select a filename

• Declare a file object

Srinivas University V Semester BCA

Advanced Java Programming 20 | P a g e

• Give the selected name to the file object declared

• Declare a file name object

• Connect the file to the file stream object

fis “test.dat”

Stream object Filename

fis inFile “test.dat”

Stream object File object Filename

2.7 Reading/Writing Characters

The two subclasses used for handling characters in files are FileReader(for reading

characters) and FileWriter(for writing characters).

The below program uses these two file stream classes to copy the contents of a file named ―

input.dat‖ into a file called ―output.dat‖.

Import java.io.*;

Class CopyCharacters
{

Public static void main(String args[])
{

//Declare and create input and output files

File infile=new File(―input.dat‖);

File outfile=new File(―output.dat‖);

FileReader ins=null; //Creates file stream ins

FileWriter outs=null; //Creates file stream outs

try

{

ins=new FileReader(infile); //opens infile

outs=new FileWriter(outFile); //Opens outfile

//Read and write till the end

int ch;

While((ch=ins.read())!=-1)
{

Outs.write(ch);

}

}

Catch(IOException e)

{

System.out.println(e);

System.exit(-1);
}

Finally //close files

Srinivas University V Semester BCA

Advanced Java Programming 21 | P a g e

{

try

{

Ins.close();

Outs.close();

}

Catch(IOException e){}

}

}

}

2.8 Reading or writing Bytes

FileReader and File Writer classes to read and write 16-bit characters. Most file systems use

only 8-bit bytes.

Two commonly used classes for handling bytes are FileInputStream and FileOutputStream

classes.

Writing Bytes to a file

import java. io. *;

class WriteBytes
{

Public static void main(String args[])

{

Byte cities []={‗D‘,‘E‘,‘L‘,‘H‘,‘I‘};

FileOutputStream outfile=null;
try

{

outfile=new FileOutputStream(―city.txt‖);

outfile.write(cities);
outfile.close();

}

catch(IOException e)

{

System.out.println(e);

System.exit(-1);
}

}

}

Reading bytes from file

import java.io.*;
class ReadBytes

{
Public static void main(String args[])

{

FileInputStream infile=null;

int b;

try

Srinivas University V Semester BCA

Advanced Java Programming 22 | P a g e

{

infile=new FileInputStream(args[0]);

while((b=infile.read())!=-1)
{

System.out.println((char)b);

}

infile.close();

}
catch(IOException e)

{

System.out.println(e);

}

}

}

2.9 Random Access File
RandomAcessFile class supported by the java.io package allows us to create files that can be

used for reading and writing data with random access.

Ie, we can ―jump around‖ in the file while using the file. Such files are known as random

access files.

A file can be created and opened for random access by giving a mode string as a parameter to

the constructor when we open the file.
We can use one of the following two mode strings.

• ―r‖ for reading only

• ―rw‖ for both reading and writing

An existing file can be updated using the ―rw‖ mode.

Random access files support a pointer known as file pointer that can be moved to arbitrary

positions in the file prior to reading or writing.

The file pointer is moved using the method seek() in the RandomAccessFile class.

When the file is opened by the statement

File =new RandomAccessFile(“rand.dat”);

The file pointer is automatically positioned at the beginning of the file.

Reading/Writing using a random access file

Import java.io.*;

Class Random

{

Public static void main(String args[])

{

RandomAccessFIle file=null;

try
{

file=new RandomAccessFile(―rand.dat‖, ―rw‖);

file.writeChar(‗X‘);

file.writeInt(555);

file.writeDouble(3.1412);

file.seek(0);

System.out.println(file.readChar());

Srinivas University V Semester BCA

Advanced Java Programming 23 | P a g e

System.out.println(file.readInt());

System.out.println(file.readDouble());

File.seek(2);

System.out.println(file.readInt());

file.seek(file.length());

filewriteBoolean(false);

file.seek(4);

System.out.println(file.readBoolean());

file.close();

}
Catch(IOException e)

{

System.out.println(e);

}

}

}

Srinivas University V Semester BCA

Advanced Java Programming 24 | P a g e

Assignment 1

1. Which of these functions is called to display the output of an applet?

A. display()

B. paint()

C. displayApplet()

D. PrintApplet()

Answer: Option B

2. Which of these methods can be used to output a sting in an applet?

A. display()

B. print()
C. drawString()

D. transient()

Answer: Option C

3. What does AWT stands for?

A. All Window Tools

B. All Writing Tools

C. Abstract Window Toolkit

D. Abstract Writing Toolkit

Answer: Option C

4. Which of these is used to perform all input & output operations in Java?

A. streams

B. Variables

C. classes

D. Methods

Answer: Option A

5. Which of these is a type of stream in Java?

A. Integer stream
B. Short stream
C. Byte stream

D. Long stream

Answer: Option C

6. Which of these classes are used by Byte streams for input and output operation?

A. InputStream

B. InputOutputStream

C. Reader

D. All of the mentioned

Srinivas University V Semester BCA

Advanced Java Programming 25 | P a g e

Answer: Option A

7. Which of these classes are used by character streams for input and output operations?

A. InputStream

B. Writer

C. ReadStream

D. InputOutputStream

Answer: Option B

8. Which exception is thrown by read() method?

A. IOException

B. InterruptedException

C. SystemException

D. SystemInputException

Answer: Option A

9. Which of these packages contain classes and interfaces used for input & output
operations of a program?

A. java.util

B. java.lang

C. java.io

D. All of the mentioned

Answer: Option C

10. Which of these class is not a member class of java.io package?

A. String

B. StringReader

C. Writer

D. File

Answer: Option A

11. Which of these class is not related to input and output stream in terms of functioning?

A. File

B. Writer

C. InputStream

D. Reader

Answer: Option A

12. The package contains a large number of stream classes that provide

capabilities for processing all types of data.

A) java.awt

B) java.io

C) java.util

D) java.net

Srinivas University V Semester BCA

Advanced Java Programming 26 | P a g e

Answer: Option B

13. Which of the following method(s) not included in InputStream class.

A) available()

B) reset()

C) flush()

D) close()

Answer: Option C

14. Which of the following methods not included in OutputStream class.

A) write()

B) skip()

C) close()

D) flush()

Answer: Option B

15. The DataInputStream and DataOutputStream classes are streams

that allow the reading and writing of java primitive data types.

A) file

B) sequence

C) object

D) filter

Answer: Option D

16. The class provides the capacity to read primitive data types from

an input stream.
A) pushbackInputStream

B) DataInputStream

C) BufferedInputStream

D) PipeInputStream
Answer: Option B

17. DataInput is

A) an abstract class defined in java.io

B) a class we can use to read primitive data types

C) an interface that defines methods to open files

D) an interface that defines methods to read primitives data types

Answer: Option D

18. The following example shows the creation of a

import java.applet.*;
import java.awt.*;

public class Main extends Applet{

public void paint(Graphics g){
g.drawString("Welcome in Java Applet.",40,20);

}

}

A. Banner Using Applet

Srinivas University V Semester BCA

Advanced Java Programming 27 | P a g e

B. Basic Applet

C. Display Clock

D. None Of The Above

Answer: Option B

19. An applet can play an audio file represented by the AudioClip interface in the java,

applet package Causes the audio clip to replay continually in which method?
A. Public Void Play()

B. Public Void Loop()

C. Public Void Stop()

D. None Of The Above
Answer: Option B

20. What invokes immediately after the start() method and also any time the applet needs

to repaint itself in the browser?
A. Stop()

B. Init()

C. Paint()

D. Destroy()

Answer: Option C

21. Which method is called only once during the run time of your applet?

A. stop()

B. paint()

C. init()

D. destroy()

Answer: Option C

22. When an applet is terminated which of the following sequence of methods calls take

place?
A. stop(),paint(),destroy()

B. destroy(),stop(),paint()

C. destroy(),stop()

D. stop(),destroy()

Answer: Option D

23. Which is a special type of program that is embedded in the webpage to generate the
dynamic content?

A. Package

B. Applet

C. Browser

D. None Of The Above

Answer: Option B

24. What is used to run an Applet?

A. An Html File

B. An Appletviewer Tool(For Testing Purpose)

C. Both A & B

D. None Of The Above
Answer: Option C

Srinivas University V Semester BCA

Advanced Java Programming 28 | P a g e

25. Which is the correct order of lifecycle in an applet?

A. Applet Is Started,Initialized,Painted,Destroyed,Stopped

B. Applet Is Painted,Started,Stopped,Initilaized,Destroyed

C. Applet Is Initialized,Started,Painted,Stopped,Destroyed

D. None Of The Above

Answer: Option C

Long Answer questions
1. Explain the life cycle of Applet with neat diagram.
2. How to build the applet code along with the syntax.

3. How to pass the parameters to Applet. Explain with example.

4. Explain about Input/output Exception.

5. Explain about Random Access File along with example.

6. Write a note on reading and writing bytes.

7. Write a note on reading and writing characters.

8. What are the procedures to create the file.

9. Explain about character stream classes.

10. Write all the methods of InputStream and OutputStream classes

